NDE and Advanced Actuators for Space Applications at JPL

Yoseph Bar-Cohen, yosi@jpl.nasa.gov

http://ndeaa.jpl.nasa.gov/

NAC

non-destructive evaluation

CAP

electro-scrive polymers

USM

utNasonic motors

robotics
a chiefors

Seminar presentation, Japan, June 1999

What is NDEAA?

Nondestructive Evaluation and Advanced Actuators

R&D FOCUS AREAS

Mechanisms and devices that are driven by acoustic or elastic waves.

	Small amplitude	Large amplitude
Low frequency (KHz)	Sono-tomography	Actuation
High frequency (MHz)	NDE & diagnostics	Medical treatment

JPL's NDE & Advanced Actuators (NDEAA) Group

TOPICS OF R&D

• NDE

 Materials properties and flaws characterization using leaky Lamb waves (LLW) and polar backscattering

Advanced Actuators

- Low Mass Muscle Actuators (LoMMAs) using electroactive polymers
- Ultrasonic motors (USM) and piezopumps

Ultrasonic Medical Diagnostics and Treatment

- High power ultrasound (FMPUL)
- Acoustic Microscopy Endoscope (200MHz)

• TeleRobotics

- Multifunction Automated Crawling System (MACS) and autonomous scanner platforms
- Noninvasive geophysical probing system (NGPS) for Mars exploration, gas pipes and coal-mines
- Ultrasonic and coring for planetary exploration

Ultrasonic Leaky Lamb Wave* NDE Method

- Very good agreement between theoretical analysis and experimental data
- An efficient setup was developed for data acquisition
- An inversion algorithm was developed to allow determination of the elastic constants
- Method was applied to NDE of defects imaging and characterization

LLW C-scan of [0]₈
Gr/Ep Laminate

^{*} Phenomenon discovered in composite materials by Y. Bar-Cohen in Aug. 1982

Leaky Lamb Wave (LLW) Test System

LAMINATE PROPERTIES

E ₁₁ (GPa)	157.7700
E ₂₂ (GPa)	10.8200
G ₁₂ (GPa)	7.9820
G ₂₃ (GPa)	3.6367
ν ₁₂	0.3374
ρ (gm/cc)	1.5780
C ₁₁ (GPa)	162.7290
C ₂₂ (GPa)	14.5270
C ₁₂ (GPa)	7.3590
C ₂₃ (GPa)	7.2500
Css (GPa)	7.9820

ULTRASONIC POLAR BACKSCATTERING*

Preferred scattering characteristics of discontinuities allows to perform unique imaging of their configuration

45° cracks

a - ANGLE OF INCIDENCE

WHERE:

ANGLE BETWEEN Y-AXIS AND THE TRANSMITTER BEAM TRAJECTORY ON THE LAYER PLANE

Imaging of fiber orientation

* Phenomenon discovered by Y. Bar-Cohen in Sept. 1979

Multifunction Automated Crawling System (MACS)

MACS is a miniature crawler that forms an enabling technology for automated NDE and maintenance.

It has the following characteristics:

- Operation in any position including mounting vertically and attached upside down.
- Designed to allow rotation on the spot upon a command from the control system
- Ability to move on complex shape structures.
- Effective carrying capability of about 1:10 weight ratio.
- A large carrying platform.

HIGH POWER ULTRASOUND TREATMENT

JPL/CSMC/QMI Frequency Modulated high Power Ultrasonic (FMPUL) METHOD

Blocked artery

Angiographic example of the effect of transcutaneous ultrasound on the left iliofemoral artery of a rabbit.

Recovered artery after 30 minutes of treatment

Flash photography dark-field view of cavitations formed in water using high power ultrasound.

COAL LAYERS AND MINES STATE-OF-STRESS EXAMINATION USING NON-INVASIVE SURFACE WAVE MEASUREMENTS

Ultrasonic cross section imaging of a bridge slab

Thickness, mm

Ultrasonic response from two typical areas of a tested bridge

ULTRASONIC ROCK DRILLING

Flexible drilling wire

MINIATURE LOW-POWER ULTRASONIC CORE DRILLER (UTCD)

Ultrasonically drilled rocks

Actuator and sting

General view of the corer actuator and end effector

Lithotripsy unit with actuator and sting

Corer finite element modeling

Ultrasonic motors (USM)

Ultrasonic motors are driven by traveling flexure waves induced by a ring-shape sequentially-poled piezoelectric wafer(s).

JPL progress

- USMs are analytical modeled for efficient design and for operation in cryovac conditions.
- Experimental setup developed for investigation of the cryovac performance.
- USM were made with segmented and reversed wafers (patent pending).
- Miniature drive electronics is developed.
- The JPL's USM were shown to operate more than 5 times longer than the leading commercial USMs.
- Technology transfer to two major corporations for mass production applications is currently in advanced phases.

Cryovac response of USMs

An Ultrasonic C-Scan image of a 1.2" diameter stator (Shinsei) that was subjected to 150°C and 16 mTorr for over 67-h.

Torque-speed performance of a JPL/QMI USM subjected to 150°C and 16 mTorr (lasted 336 hours)

FINITE ELEMENT ANALYSIS OF USM

- Finite element model was developed to analyze the behavior of ultrasonic motors in response to various design configurations.
- Predictions of the frequency response of USM's stators were corroborated experimentally at MIT using an interferrometric system.

Detailed Modeling Using ANSYS FEM Analysis

Motor wave travel of $1/4 \lambda$

ELECTROACTIVES POLYMERS (EAP)

SAMPLE HANDLING AND MANIPULATION

EAP Robotic arm

Lifter

APPLICATIONS OF BENDING EAP ACTUATOR

Gripper

Wiper

JPL

Low Mass Muscle Actuators (LoMMAs)

Gripper using bending EAP fingers

Longitudinal EAP lifter using scrolled rope

Deflection vs. voltage at RT and -100°C.

Surface wiper

IPMC - EAP BENDING ACTUATOR

Charging capability

Higher resistance at Low Temp

Response at Cryovac

EAP STATUS

- Electroactive Polymers are emerging as effective displacement actuators.
- These materials offer the closest resemblance of biological muscle potentially enabling unique capabilities changing the paradigm about robots construction.
- Under the NASA's LoMMAs task, JPL developed a series of devices that are driven by EAP including dust wiper, gripper and robotic arm
- EAP are inducing a low actuation force limiting the applications that can use their current capability
- In recognition of this limitation two annual conferences were established: SPIE (March) covering actuators and applications and MRS (Dec.) materials science.
- A challenge was posed to the EAP community to have an arm wrestling between robot that is equipped with EAP actuators and human.